
NDE2015, Hyderabad 

November 26-28,2015 

 

 

 

 Indirect Error Representation using Kanpur Theorem – 1 
Anurag Maan

1
, Nachiketa Tiwari

2
, Prabhat Munshi

3 

Indian Institute of Technology Kanpur 

1. amaan@vols.utk.edu; 2. ntiwari@iitk.ac.in(0512-259-6526) 3. pmunshi@iitk.ac.in 

 

 

Abstract 

 
Computed Tomography is a vital tool in non-destructive imaging and evaluation. Various 

algorithms have been previously developed based on different mathematical approaches to perform 

tomographic reconstruction of a volume or a slice of an object under test. It has been established that out 

of the various algorithms Convolution Back-Projection stands out for its efficiency and speed. Other 

developments in the field include identification and quantification of an inherent error in tomographic 

algorithms. This quantification called the Kanpur Theorem-1 can be used to extract information about the 

nature of reconstructions and can be used to represent error in the reconstructions indirectly. This work 

attempts at consolidating ways to represent error indirectly using Fractal Dimension computed using the 

Fractional Brownian motion approach and introduces another parameter as a measure of this indirect 

error. The analysis show that the inverse of sharpest change in the intensity of the reconstructed image 

shows healthy agreement with conventionally accepted error representatives like the Fractal Dimension of 

reconstruction. 

 

 

--------------- 

 

1. Introduction 

 

The mathematics of reconstructing images from CT (Computed Tomography) scan data 

is well established.Convolution Back Projection is a popular algorithm to reconstruct images 

from CT scan data. Since CT scan object can be thought of as a function with finite support, CT 

images suffer from some inherent error due to certain band-limiting features of the CBP, this 

issue has been discussed at length and an attempt to quantify this error using certain Radav-

Derivatives was made by Munshi et al. [3], a simplified version of this quantification has also 

been presented by Munshi et al. [2]. This quantification of inherent error indicates a linear 

relationship between inherent error and the double derivative of the filter function used in 

reconstruction at Fourier space origin. When this linear relationship was tested for real images 

(as opposed to Simulated Phantoms where pointwise error is known because the original image 

is known), the proposed error estimate (inverse of largest gray level in the reconstruction1/Nmax), 

exhibited a similar linear relationship which indicated that the other errors in a tomographic 

reconstruction namely instrument and discretization errors are either zero or of the same order as 

that of inherent error [4]. In the same work [4] Munshi et al. indicated that just like inverse of 

largest gray level Fractal Dimension of an image which quantifies texture can also be used as an 

error estimate. The concept of a fractal dimension was first introduced by Mandelbrot [5]. Chen 

et al. [6] showed that the fractal dimension could be obtained in medical images by the concept 

of fractional Brownian motion. Later Bhat et al. [7] used Fractal Dimension analysis to show that 

usual L1 and L2 norms (used as errors) exhibit a linear relationship with fractal dimension 

computed over a certain range of scale [7], another implication of this work was that CT images 

can be treated as multi-fractals. This discussion infers that fractal dimension of a CT image over 
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a certain range can be used as an error estimate.Our results indicate that the inverse of sharpest 

change in the intensity of the reconstructed image shows healthy agreement with conventionally 

accepted error representatives like the Fractal Dimension of reconstruction and L2 norm. 

2. Simulation Parameters 

The Convolution Back Projection algorithm was implemented on MATLAB for the test 

phantoms in figure 1. The test phantoms S1 through S5 were reconstructed using the filters  

 

defined by equation (1) whose parameters 

are defined in Table 1. For each 

reconstruction RMSE error (L2 Norm) was 

calculated using equation (2). Where, f

=Original object (Cyber Phantom); f
~

 = 

Reconstructed Object and  N  = Total 

Number of pixels. 

 

Table - 1 

FILTER CODE B W``(0) 

H99 0.999 0.001 

H91 0.917 0.083 

H90 0.900 0.100 

H80 0.800 0.200 

H75 0.750 0.250 

H70 0.700 0.300 

H60 0.600 0.400 

H54 0.540 0.460 

H50 0.500 0.500 

It has been shown by Munshi [2,3] that simplified form of the inherent error at a given point

( , )r ϕ in the object cross-section, is given by,  

)),()(0(),( 2

1 φφ rfWkrE ∇′′=  (3) 

 

 

 

 

e) 

Figure – 1 Test Phantoms a) S1 b) S2 c) S3 d) S4 e) S5 
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f2∇ is the Laplacian of  f  and  k  is a constant depending on the data ray spacing related to 

the cut-off frequency cR . Equation (3) is valid for the objects having certain smoothness 

properties [3]. The error represents the point-wise theoretical error in reconstruction. This error 

can be computed for different filters from table-1 and a so called KT – 1 plot can drawn to 

extract information about the reconstruction, as indicated by eqn (3) the graph is linear and 

provides information on smoothness, average amplitude and magnitudes of discretization and 

instrument error [3] in comparison to the inherent error. 

 

3. Error Estimates 

 

Unlike in simulated cyber phantoms,the cross-section physics (distribution)for real 

objects is unknown; hence the error in reconstruction cannot be calculated directly. This fact 

motivates an indirect representation of error. It has been reported earlier that [4], for a given data 

set, sharpness can be used as an indicator of the error behavior, arising due to the choice of the 

filter function. If the image consists of a single point, then the sharpness parameter corresponds 

to Nmax, the maximum grey level (linear absorption coefficient) in the reconstruction [3].Munshi 

et al. proposed the use of 1/Nmax [4] as an error estimate with the following support, “These 

numbers are related to the Delta Function Response of the Filters.” As mentioned earlier Bhat et 

al [7] in a separate development have concluded that fractal dimension of an image intuitively 

relates to roughness of the surface generated by the intensity values of each pixel of the image 

under consideration. They showed that L1 and L2 errors exhibit a linear relationship with respect 

to H (Hurst Coefficient) for different filter signatures (W``(0)). 

 

Leading on from this observation it can further argued that a since a tomographic 

reconstruction is a discrete approximation to a continuous function. Another error estimate may 

be the inverseof the sharpest change between two neighboring pixels in any reconstruction 

(1/dNmax). The sharpest pixel to pixel change in the immediate neighborhood (at distances 1 and 

√2) should be an indicator of the magnitude of frequency components in the neighborhood of cR  

in frequency domain; thus implying that the sharpest change in the grey level of any 

reconstruction should be inversely proportional to E1. This approach is tested and conclusions 

have been drawn in this work. We now present the KT-1 plots of the cyber phantoms and all of 

the error estimates introduced so far. 

 

4. Results and Discussion 

 

For simulated objects we are particularly interested in the goodness of fit for the KT-1 

plot. It can be argued that since RMSE is a direct error measure, an indirect error estimate must 

have a comparable goodness of fit as to the RMSE KT-1 plot. Figure – 2 presents the goodness 

of fit for a KT-1 plot, for all the cyber phantoms at 128x128 pixels, for data collected by 128 

rays per projection and 128 projections (parallel beam data collection geometry) for all the error 

estimates introduced so far. H1 and H2 are Hurst coefficient computed at two different 
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Normalized scale Ranges (NSR), where NSR isas earlier [6,7]. A complete set of results on all 

phantoms and the actual values of the Scaled Ranges are presented elsewhere [8]. 

 

 

Figure – 2 - Comparison of Goodness of Fit of different error representations from KT-1 

plots of S1 through S5 at 128x128 

 

As noise in projection data is introduced the goodness of fit should deteriorate, however, it 

should be noted that this doesn’t indicate the departure from linearity of 1E w.r.t. )0(W ′′  . It just 

indicates an increase in instrument error. For this purpose White Gaussian Noise (of different 

magnitude) was added to the projection data of S5 for 256 rays and 256 views. Figure 3 shows 

the goodness of fit for Signal to Noise ratio (SNR) ranging from 1 dB to 75 dB between 1/Nmax 

and 1/dNmax. 

 

 
Fig. 3 – S5 – Goodness of Fit with added White Gaussian Noise in Projection Data, a 

comparison between 1/Nmax and 1/dNmax(2) 
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 1/dNmax and the Hurst Coefficient show a goodness of fit which is comparable to RMSE 

consistently. However, the Fractional Brownian Motion approach to compute Fractal Dimension 

of an image is computationally intensive. The algorithm in use can be parallelized by domain 

decomposition to enable its use on High Performance Computing clusters so as to perform the 

analysis presented in this work for images of larger sizes and to consolidate the findings 

presented here. 
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